
CS152: Computer Systems Architecture
Some Loose Microarchitecture Topics

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Some loose topics
(Before getting started on memory systems)

❑ Microprogramming
o Now seems to mean a combination of two different things!

Microprogramming of old

Shift

left 2

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign

extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction

register

ALU

control

ALU
result

ALU

Zero

Memory

data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift

left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Shift

left 2

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign

extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction

register

ALU

control

ALU
result

ALU

Zero

Memory

data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift

left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

An old way of designing/describing microprocessor operation

Single “Control Logic” responsible for
generating “control signals” orchestrating operation
at each cycle

Microprogramming of old

❑ Control logic operation described as
a Finite State Machine (FSM)
o Next state depends on current state,

and input to the control logic

o Control signal output depends on
current state of the FSM

PCWrite

PCSource = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCWriteCond

PCSource = 01

ALUSrcA =1

ALUSrcB = 00

ALUOp= 10

RegDst = 1

RegWrite

MemtoReg = 0

MemWrite

IorD = 1

MemRead

IorD = 1

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

RegWrite

MemtoReg =1

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

MemRead

ALUSrcA = 0

IorD = 0

IRWrite

ALUSrcB = 01

ALUOp = 00

PCWrite

PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump

completion

Branch

completionExecution

Memory address

computation

Memory

access

Memory

access R-type completion

Write-back step

 (O
p = 'LW') o

r (O
p = 'SW') (O

p = R-ty
pe)

(O
p

=
'B

E
Q

')

(O
p
 =

 '
J
')

 (O
p = 'S

W
')

(O
p

 =
 'L

W
')

4

0
1

9862

753

Start

Microprogramming of old

❑ Control logic FSM implemented via ROM or PLA
o “Microprogramming”

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

NS0

O
p
5

O
p
4

O
p
3

O
p
2

O
p
1

O
p
0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register

opcode field

Outputs

Control logic

Inputs

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead

MemWrite

PCWrite

PCWriteCond

MemtoReg

PCSource1

ALUOp1

ALUSrcB0

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

NS0

ALUSrcB1

ALUOp0

PCSource0

Programmable Logic Array (PLA)

RISC processors typically don’t need this
(Simple control logic)

Aside: Microcode and bug patches

❑ Modern CPUs have programmable portion of the microcode storage
o No longer entirely ROM

o Programmable portion takes precedence over original microcode

o Makes live bug patches possible!

o Implement same x86 instruction using a different (“bug free”) sequence of
microcode operations

❑ For example, CPU patches for the infamous Spectre exploit involved
microcode patches
o When “BIOS updates” are required, this is often what’s happening

Microprogramming of new: CISC and x86

❑ x86 ISA is CISC (“Complex”)

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017

Microprogramming of new: CISC and x86

❑ Modern microarchitectural advances are difficult to get right on CISC
architectures
o Superscalar, Out-of-Order, Transactional memory, etc

o Too many conditions and states to keep track of!

❑ Instead, modern CISC processors internally implement a RISC core with
modern bells and whistles
o e.g., AMD’s patented RISC86 ISA

o “Front-end” x86 ISA translated by CPU hardware on-the-fly to RISC instructions

pop [ebx]
load temp , [esp]
store [ebx] , temp
add esp , 4

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017

Microprogramming complex instructions

❑ There is typically a fixed
sequence of control signals/RISC
instructions to generate for one
CISC instruction
o Decoder is programmed with a

“program” for generating them

❑ This is not exclusive to CISC-RISC
translation. Idea is old!

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead

MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p
[5
–

0
]

Adder

1

Datapath

Instruction register

opcode field

BWrite

Microcode decoder is like a small CPU, with PC and everything!

Microprogramming of new

❑ Microprogramming can be used to generate a sequence of control signals
per input instruction
o Implemented via a chain of FSM states in the control logic

o No longer designed manually though! Lots of tool research into efficient
microcode compilation

o Usually multiple “decoders” operating in parallel

❑ We know traditional techniques are still used

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017

Some loose topics
(Before getting started on memory systems)

❑ Superscalar
o Just a taste!

Superscalar Processing

❑ An ideally pipelined processor can handle up to one instructions per
cycle
o Instructions Per Cycle (IPC) = 1, Cycles Per Instruction (CPI) = 1

❑ Superscalar wants to process multiple instruction per cycle
o IPC > 1, CPI <1

o An N-way superscalar processor handles N instructions per cycle

o Requires multiple pipeline hardware instances/resources

o Hardware performs dependency checking on-the-fly between concurrently-
fetched instructions

Pipeline for superscalar processing

❑ Multiple copies of the datapath supports multiple instructions/cycle

❑ Register file needs many more ports

❑ Actually requires a complex scheduler in the decode stage!

Fetch Execute Memory

Register
File

Decode

Decode

Execute Memory Writeback

Writeback

Superscalar has concurrent hazards

❑ What if two concurrently issued instructions have dependencies?
o No choice but to stall the dependent instruction…

o … in an in-order pipeline!

❑ Data hazards
o e.g., “addi s1, s0, 1” and “addi s2, s1, 1” issued at the same time?

• Forwarding won’t work here! Both instructions in decode stage at the same time

• Scheduler must stagger “addi s2, s1, 1”, sacrificing performance

❑ Control hazards
o e.g., How to handle a beq, followed by another instruction?

• Branch prediction, as usual

Results in very complex control logic! (Chip resources/cost!)

← Topic for another day

In-order superscalar example

lw t0, 40($s0)

add t1, $s1, $s2

sub t2, s1, s3

and t3, s3, s4

or t4, s1, s5

sw s5, 80(s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DM
IM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DM
IM

or

sw
80

$s0

+ $s5

Actual IPC = 2 (6 instructions issued in 3 cycles)

Ideal IPC = 2 (2-Way superscalar)

No dependencies between
any instructions

Source: Onur Mutlu, “Design of Digital Circuits,” Lecture 16, 2019

In-order superscalar with dependencies

lw t0, 40(s0)

add t1, t0,$s1

sub t0, s2, s3

and t2, s4, t0

or t3, s5, s6

sw s7, 80(t3)
Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw
lw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DM
IM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF

+

DM

sw

IM

$s7

9

$s3

$s2

$s3

$s2

-
$t0

or
or $t3, $s5, $s6

IM

Ideal IPC = 2 (2-Way superscalar)

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Dependencies across
many instructions!

Stalled until writeback
can be forwarded

Stalled until exec
can be forwarded

No stall, exec
can be forwarded

Source: Onur Mutlu, “Design of Digital Circuits,” Lecture 16, 2019

In the real-world: Core i7 performance

❑ Core i7 has a 4-way Out-of-Order
Superscalar pipeline
o Ideally, 0.25 Cycles Per Instruction (CPI)

o Dependencies and misprediction
typically results in much lower
performance

Is it worth it? Or do we want just more, simpler cores?
Depends on your target area (servers? phones?) and
profiling results…

In the real-world: Core i7 performance

❑ Branch predictors work pretty well!
o But deep/wide pipelines result in high

mispredict overhead

Some loose topics
(Before getting started on memory systems)

❑ Hardware Performance Counters
o Small number of special-purpose registers (few dozens in modern x86)

o User-configured to count hardware activities

o E.g., number of issued instructions, cache misses, branch mis-predicts, etc

o Important for performance profiling! (And some security attacks)

❑ Easiest is to use utility “perf”

Some loose topics
(Before getting started on memory systems)

❑ Macro-op fusion
o Multiple instructions can be “fused” into a larger one

• Two four-byte instruction treated as one 8-byte one

• This is independent from ISA design!

o Why?
• Smaller number of instructions to process

• While still maintaining RISC ISA (Also used in CISC / x86 with smaller instructions)

• Typical criticism of RISC is a larger number of generated instructions for same program

Can be fused into one instruction
Without more functionality in the execute stage

Source: Wikichip

